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ABSTRACT

A combination of a parallel electric field and pressure gradient can cause DNA molecules

to migrate transverse to the field lines. We hypothesize that the phenomenon is due to an

electrically induced velocity disturbance. A Brownian dynamics method for a bead-spring

model of a polymer, that incorporates this electrically induced velocity disturbance, was

constructed and used to predict the dynamics of DNA molecules transported through a

microfluidic channel due to the pressure driven flow and electric field. Using simulation,

we obtained the probability distribution of the centers-of-mass of the DNA molecules in

multiple channels with different cross-sectional dimensions. Preliminary simulation results

match, at least qualitatively, the extent of migration and the entry length measured in the

experiments.

I. INTRODUCTION

Experimental results have shown that pressure driven DNA in confined space undergoing

electrophoresis can migrate transverse to the fields lines [1]. The ability to control transverse

migration of DNA has applications in biotechnology such as biosensing, genomic mapping,

and lab-on-chip devices.

The literature has claimed viscoelasticity can cause migration [2], and it has also been

proposed that a long range electrically induced velocity disturbance is the reason for DNA

migration [3]. The latter theory predicts that the DNA is first extended and aligned at

an angle with respect to the channel axis by the shearing flow, and then the electric field

generates a net transverse migration caused by the electrically induced velocity disturbance.

An electro-hydrodynamic tensor is used to account for the disturbances caused by electro-

hydrodynamic interactions [3], and the Rotne-Proger tensor is used to approximate the

hydrodynamic interactions [4]. We extend the model proposed by Kekre et al. [3] to better fit

experiments performed in the same lab, with different variables such as channel dimensions,

electric field strength, and mean shear rate. We present simulation results with different

conditions, and compared extents of migration across different conditions. We also analyzed

the radius of gyration tensor to better understand the configuration of the DNA molecule

as it migrates. Ultimately, we seek to predict the optimal conditions to achieve maximum
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DNA migration.

II. SIMULATION METHODS

A. Model

The DNA molecules are modeled as a chain of beads connected by springs. Each bead i

in this bead-spring model of the DNA is governed by a force balance

FD
i + FS

i + FR
i + FB

i + FW
i = 0, (1)

where inertia has been ignored. The forces are drag, spring, repulsive, Brownian, and wall

repulsive forces, reading left to right in equation (1). Each of the forces is described in the

following paragraphs.

The drag force is

FD
i = ζ[

dri
dt
− u∞i ], (2)

where ζ = 6πηa is the drag coefficient and u∞i is the disturbance velocity evaluated at the

center of the bead i. Note that η is the viscosity of the fluid and a the radius of the bead.

For the DNA (Zimm) model, we use FENE springs, which has a potential of [4]

ΦS(rij) = −1

2
κr20 ln

(
1−

r2ij
r20

)
, (3)

where κ is the spring constant, r0 is the maximum allowed extension of a spring, and rij is

the bond length between bead i to bead j. So the FENE spring force is then

FS
i =

κrij

1− r2ij
r20

. (4)

Additionally, we considered the Rouse model for validation, where the Hookean spring force

is used

FS
i = κrij. (5)

To prevent beads from overlapping, we introduce an excluded volume repulsive force

between beads with potential [4],

ΦR(rij) = A exp(−βr2ij). (6)
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The corresponding force is

FR
i = 2Aβ exp(−βr2ij)rij. (7)

The wall force is similar to the excluded volume force, but is twice as large in magnitude.

The Brownian force satisfies the fluctuation-dissipation theorem [5]

〈FB
i (t)〉 = 0, (8)

〈FB
i (t)FB

j (t0)〉 = 2kBT (µRPij )−1δ(t− t0), (9)

where kBT is the Boltzman energy term, µRPij the mobility tensor, and δ the Dirac delta

function.

We use the Rotne-Proger (RP) tensor, µRP , to describe the hydrodynamic interactions

between individual beads; the RP tensor µRP
ij is [4]

µRP
ij =

1

6πηa


C1I + C2

rijrij
r2ij

, rij ≥ 2a,

C ′1I + C ′2
rijrij
r2ij

, rij < 2a,

I, i = j,

(10)

where

C1 = 3
4
a
rij + 1

2
a3

r3ij
, C2 = 3

4
a
rij −

3
2
a3

r3ij
,

C ′1 = 1− 9
32
rij
a , C ′2 = 3

32
rij
a .

(11)

Upon adding an electric field and an ambient flow field, the differential equation becomes

dr

dt
= [u∞ + µRP · (F + FB) + µE · FE], (12)

where r is the vectorized positions of all beads, F, FB, and FE are the vectorized forces,

and µRP and µE are the grand mobility tensors for the hydrodynamic interactions and

electrically induced fluid disturbances. The electric force is

FE
i = QE, (13)

where Q is the charge carried by each bead and E is the electric field strength. We use a

simple shear flow, a parabolic flow, and several 3-D pressure driven flows in our simulation.

The simple shear is defined as

u∞x = γ̄(ry − rCOMy ), (14)
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where γ̄ is the mean shear rate, and ry is the y coordinated the bead. The unidirectional

pressure driven flow is parabolic,

u∞x = 2γ̄(ry − r2y/h). (15)

The 3-D parabolic flows for the square and rectangular channel grids are obtained numer-

ically and the flow field velocity for each bead is interpolated using the 4 adjacent grid

points.

The electrophoretic mobility is [3]

µE
ij =



λ2D
4πηa3rij3

[
3rijrij
rij2

− I
]
, rij ≥ 2a,

0 rij < 2a,

µE0 I, i = j,

(16)

where µ̃E0 = 0.514 is the unsheared electrophoretic mobility, and λD is the Debye length.

B. Numerical Methods

All forces and flows are calculated based upon the instantaneous positions of the DNA

beads, and the stochastic Brownian displacements are calculated using a uniformly dis-

tributed random number generator that has a mean of zero and variance of 1/12. More

specifically, the Brownian force meets the following condition

〈FB
i (t)FB

j (t0)〉 = 2kBT (µRPij )−1/∆t. (17)

Therefore, the vectorized Brownian force can be written as

FB(t) = cB ·W, (18)

where c =
√

24kBT/∆t, B is the Cholesky decomposition of the RP tensor, and W is a

vector containing uncorrelated random numbers with a mean of 0 and variance of 1/12. The

bead velocities are calculated using equation (10), and the velocities are integrated to give

their positions as a function of time. An Euler method is used to perform the integration

of the stochastic equation, which requires applying a correction for the drift velocity that

results from integrating the stochastic portion of the equation of motion [6]. However, the
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correction, which is proportional to the divergence of the mobility tensor µRPij , is zero in the

present case.

The simulations were performed with a time step of 10−3, and the results were confirmed

to be convergent, since results, such as radius of gyration and Rouse relaxation times,

calculated from simulation data with time steps of 10−3 and 10−4 were consistent with each

other. From the positions as a function of time for a large number of polymer trajectories,

averaged quantities such as relaxation time and center-of-mass distributions were calculated.

First the simulation method was verified against known results (see section III), and then the

simulation was used for calculating the motion of polyelectrolytes in microfluidic channels

(see section IV).

III. VALIDATION

Several static and dynamic properties were calculated and compared with the literature to

validate our simulation. In the following sections, we list our parameters used and compare

our results with those from the literature. Overall, our simulation results closely match

those from the literature, validating our simulation.

A. Rouse Model

The Rouse model simulates polymer chains with N identical beads that only experience

Hookean spring forces, Brownian forces, and drag forces. The Rouse model assumes no

hydrodynamic interaction, so µRPij is replaced by I/ζ. Non-dimensionalization factors for

the Rouse model are summarized in Table I; the only two parameters manipulated were the

number of beads N , and the spring constant κ.

Energy Length Time

kbT a ζ ∗ a2/kbT

Table I. Rouse model non-dimensionalization factors.

To validate our Rouse model, we compared the Rouse relaxation time, τr, obtained from

simulation results to the analytical solution provided by Doi and Edwards [5]. The analytical
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solution is given by the equation

τr =
ζN2b2

3π2kBT
, (19)

where b =
√

3kbT/κ is the equilibrium bond length; theoretical predictions are compared

with simulation results obtained by fitting the correlation function

P (t) =<Z(t) •Z(0)>, (20)

where Z is the end to end vector, to a single exponential

A exp(−t/τr). (21)

Our (dimensionless) results for a 11-bead system are summarized in Table II. The results

are within 1% of theoretical predictions.

κ̃ τ̃r (simulations) τ̃r (theoretical)

0.125 97 ± 0.5 98.1

0.25 49 ± 0.5 49.0

0.5 24 ± 0.5 24.5

Table II. Rouse relaxation times from simulation compared to the theoretical solutions. Note that

since we non-dimensionalize distance with the bead radius a instead of the effective bond length b,

κ̃ is equal to 3a2/b2. Tilde indicates non-dimensional values.

B. Zimm Model

In the Zimm Model, neighboring polymer beads are connected by FENE springs, and

excluded volume effects are included. Additionally, the full Rotne-Proger mobility tensor is

used to include hydrodynamic interactions. Non-dimensionalization factors are summarized

in Table III, where b =
√
kbT/κ (not to be confused with the definition in Doi and Edwards

[5] where b =
√

3kbT/κ ).

Static and dynamic properties are studied and compared with the literature to validate

the simulations. Equilibrium end to end distance is calculated as

< R2
e >=< (rN − r1)

2 >, (22)
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Ref κ̃ ã r̃0 Ã β̃

Kekre et al. [3] 1 0.36 5.48 2.71 1.5

Ladd et al. [7] 1 0.362 5 2.7 1.8

Table III. Non-dimensionalization parameters in the literature

Energy Length Time

kbT b ζ ∗ b2/kbT

Table IV. Zimm model non-dimensionalization factors

while equilibrium radius of gyration is calculated as

< R2
g >=

1

N

N∑
k=1

< (rk − rmean)2 > . (23)

Both < R2
e > and < R2

g > from our simulations match those found in the literature as can

be seen in Table V [4, 7].

Ref Our < R2
e > /b2 Author’s < R2

e > /b2 Our < R2
g > /b2 Author’s < R2

e > /b2

Kekre et al. [3] 40.11 40.25 6.86 6.89

Ladd et al. [7] 44.1 44.2 7.49 7.5

Table V. Equilibrium end to end to distance and radius of gyration compared with those in the

literature

By averaging over a long time (8 ∗ 108 dimensionless time units), we obtained Rouse

relaxation times τr that are in agreement with Kekre et al. [4], Ladd et al. [7]. The results

are summarized in Table VI.

C. Length-dependent Electrophoresis

We also validate that length-dependent electrophoresis does occur, if the shape of the

polyelectrolytes deviates from that of a sphere [3]. The unsheared electrophoretic velocity,

UE
0 is independent of the chain length; however, with inclusion of a constant shear, larger

systems start to move faster. The increase in electrophoretic velocity is close to linear for

small shear rates but plateaus eventually. The electrically induced velocity disturbance
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Ref Our τr/t0 Author’s τr/t0

Ladd et al. [7] 16.4 16.4

Kekre et al. [3] 15.2 15.2

Table VI. Rouse relaxation times compared with those from the literature

Figure 1. Length-dependent electrophoresis occurs under a constant shear. The electrophoretic

velocity is non-dimensionalized by the unsheared electrophoretic velocity, and the shear rate by

the viscous relaxation time of a 20-bead system, τ20 = 16.5 [3].

generates an additional contribution in the electric field direction upon the extension of

polymer under shear [3]. Our results, shown in FIG 1, do not differ more than 2% from

Kekre et al. [3].

D. Concentration layer thickness and electric field strengths

Theory predicts that at a given mean shear rate, there is an optimal electric field strength

that leads to maximum migration [3]. In Kekre et al. [3], the 10-bead DNA is confined by two

walls with a separation of 100Rg. We adjusted the electric field strength at a Weissenberg

number of Wi = 0.68, where Wi is a dimensionless parameter that is the product of the

mean shear rate λ and the viscous relaxation time τ̃ = 4.57. We saw that an optimal electric
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Figure 2. Concentration layer thickness, lc, nondimensionalized by the equilibrium radius of gyra-

tion Rg, is shown to decrease and rebound, upon increase in the electric field strength, E. Trace of

the gyration tensor is seen to increase noticeably right after the optimal electric field. The electric

field is defined by the electric Weissenberg number WiE = µE0 QEτ/Rg, where in dimensionless

terms, µ̃E0 = 0.5143 and τ̃ = 4.57 [3]. DNA molecules of 20 beads are simulated to obtain results

in this figure.

field strength did indeed exist. In FIG 2, the concentration layer thickness, defined as the

half width of the area containing 95% of the polymer, decreases to a minimum and then

goes back up. Our results are within 3% of the those in Kekre et al. [3], which is quite good

since Kekre et al. [3] does not specify certain parameters. It is evident that at high electric

fields, the DNA suddenly becomes large, as shown by the trace of the gyration tensor, and

the DNA is further aligned with the field direction, leading to a decrease in migration.

IV. RESULTS

Twenty-bead chains representing λ-DNA undergoing electrophoresis was simulated in a

square channel of length 1.8 cm, and the concentration layer thickness is plotted against

distance traveled along the channel. Non-dimensionalization factors are the same as those

listed in Table IV. A 3-D representation of the evolution of concentration profile is included
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Figure 3. DNA becomes highly concentrated as it travels through the channel. By the exit of the

channel, the profile is fully developed. The fields used are characterized as Ucenterline = 600 µm/s

and Uelectrophoretic = 85 µm/s.

as well in FIG 3. To better understand DNA migration, we calculated < 2Gxx−Gyy−Gzz >

/R2
g, which measures extension of the DNA molecules in the flow direction. In FIG 4,

simulation results tell us that initially, DNA molecules are highly extended, leading to a

high migration velocity indicated by the steep slope of the lc curve. As the DNA travels

further down the channel, it gets more concentrated in the center, where the shear rate is

lower and becomes zero at the exact center of the channel. The DNA extension therefore

decreases and migration slows down. As the concentration profile becomes fully developed,

< 2Gxx −Gyy −Gzz > /R2
g drops below 3, suggesting that the DNA reverts back to almost

a spherical shape. FIG 4 indicates an entry length of around 1.25 cm, which is consistent

with experimental measurements.

We also simulated λ-DNA in a rectangular channel of dimensions 100 µm by 400 µm with

an electric field and 3-D pressure driven flow. Evolution of the concentration profile is in

FIG 5. Notice that in y (shorter dimension) and z (longer dimension) direction, the extent

of migration differs greatly. This is largely due to the fact that the mean shear rate along

the z axis is much lower than that along the y axis. The concentration profile is not fully

developed by the end of the channel, which is why there are two peaks on the both sides in

the third plot in FIG 5. The DNA molecules clustering in those two peaks are experiencing

very low shear rate, leading to low migration velocity. Eventually, as the concentration

profile becomes fully developed at approximately 120 cm, the two peaks disappear, as can

be seen in the fourth plot in FIG 5.

Different electric fields affect the concentration layer thickness differently, as suggested in

FIG 6. The optimal electric field strength is different depending on the axis. Coming from
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Figure 4. Concentration layer thickness lc/Rg and < 2Gxx −Gyy −Gzz > /R2
g are plotted against

distance traveled along the channel. Radius of gyration Rg in dimensional terms is approximately

1 µm.

the z axis, the optimal electric field is around Q̃Ẽ = 30, whereas from the y axis, the optimal

is Q̃Ẽ = 8. This is due to the difference in extension in the y and z direction. The polymer

is more extended in the y direction because the shear rate is higher. As noted before, the

over-extension of DNA leads to further alignment of the DNA in the field direction and

decreases migration. The over-extension happens earlier with a higher shear rate, and later

with a lower shear rate. In the z direction, the optimal electric field is higher because smaller

shear rate leads to over-extension that happens later.

Further, we explored the effects of the pressure field centerline velocity on the extent of

migration. Primarily, we wanted to see that if from z direction (wider side), changing the

pressure field would give us more migration at the exit of the channel. We found that indeed

there is an optimal pressure flow velocity that gives the most migration in FIG 7. Similar to

when we vary the electric field, the extent of migration decreases after the optimal pressure

field velocity is reached, and extents of migration differs in the y and z direction.
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Figure 5. Evolution of the concentration profile of DNA in a rectangular channel is simulated. At

the exit of the channel (1.8cm), the profile is far from fully developed. At 1.2 m, DNA becomes

concentrated looking from the z axis and the profile is fully developed.

V. CONCLUSION

We conducted simulations using parameters found in existing work and our simulation re-

sults match those in the literature quantitatively, validating our work. Our results show that

DNA migration under electric and pressure driven flow can be explained by the electrically

induced velocity disturbance. The DNA under shear is extended and aligned at an angle,

and then the electric field generates a contribution transverse to the field direction. Higher

relative extension in the field direction leads to a higher migration velocity, and migration

velocity decreases as more DNA migrates to the center of the channel. DNA migration

under 3-D pressure flow in a square channel and rectangular are simulated with adjusted

parameters to match experimental conditions. We found that not only is there an optimal

electric field for a 2-D pressure flow, but also for a 3-D pressure flow. Additionally, adjust-

ing pressure driven flow can lead to more migration. A square channel shows symmetric

migration from the y and z direction, while a rectangular channel shows different extents

of migration in different directions. Our preliminary results are at least consistent with
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Figure 6. Concentration layer thickness at different electric fields in a rectangular channel is plotted.

The center line velocity is Ucenterline = 600 µm/s or Ũcenterline = 37.23. Different directions show

different optimal electric field strengths that would give maximum migration. Note that since in the

z direction, the profile is not fully developed at 1.8 cm, we simply averaged the concentration layer

thickness at the exit, while from the y direction, the concentration layer thickness was calculated

using fully developed results.

experimental results qualitatively. Extents and rates of DNA migration depend on electric

field strength, pressure driven flow velocity, and channel dimensions. In the future, we will

compare simulation results to experiments conducted in the same lab in a more quantitative

way.

14



Figure 7. Concentration layer thickness calculated at different pressure flow velocities. The electric

field used in this plot is Q̃Ẽ = 30.
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